Stability analyses of reinforced walls subjected to simulated toe scouring

Author:

Huang C.-C.1,Chen Y.-S.2

Affiliation:

1. Professor, Department of Civil Engineering, National Cheng Kung University, No. 1, University Road, Tainan, Taiwan 70101, Telephone: +886 6 2757575 ext. 63160, Telefax: +886 6 2358542, E-mail: samhcc@mail.ncku.edu.tw

2. Graduate student, Department of Civil Engineering, National Cheng Kung University, No. 1, University Road, Tainan, Taiwan 70101, Telephone: +886 6 2757575 ext. 63160, Telefax: +886 6 2358542, E-mail: jaykimoj@hotmail.com

Abstract

ABSTRACT: Limit-equilibrium-based internal and external stability analyses were performed for two carefully designed and monitored reinforced model walls reported in a companion paper. Failure mechanisms and associated safety factor changes against toe scouring were investigated. Safety factors against various failure modes – reinforcement over-stressing, reinforcement pullout, lateral sliding, overturning and bearing capacity – were derived, based on well-known material properties and theories. It was shown that the ultimate collapse state of the wall with a low reinforcement–facing connection strength was controlled by the pullout of the reinforcement from the facing. A low reinforcement–facing connection impeded the full mobilisation of reinforcement force in the lowermost layer of the reinforcement, which in turn reduced the ductility of the structure and accelerated the failure process. For the wall with high connection strength, the ultimate collapse of the wall was controlled by the bearing capacity failure near the slope toe. The analytical bearing capacity failure state was supported by the experimental observation of the failure wedge below the facing and the reinforced zone. Experimental results also suggested that a transitional wall displacement of Dh max/Ht = 0.2–1.0%, signalling rapid wall displacement for further inclined toe cutting (or further toe scouring), is associated with higher internal and external stability safety factors than those suggested in current design guidelines that do not take into account the effects of toe scouring.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3