External stability of reinforced soil walls under seismic conditions

Author:

Choudhury D.1,Nimbalkar S. S.2,Mandal J. N.3

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Bombay Powai, Mumbai 400 076, India Telephone: +91 22 2576 7335, Telefax: +91 22 2576 7302,

2. Department of Civil Engineering, Government College of Engineering Karad, Satara – 415124, India Telephone: +91 93 2671 2190, Telefax: +91 21 6427 1713,

3. Department of Civil Engineering, Indian Institute of Technology Bombay Powai, Mumbai 400 076, India, Telephone: +91 22 2576 7328, Telefax: +91 22 2576 7302,

Abstract

Determination of the external stability of reinforced soil walls under earthquake condition is an important topic of research for geotechnical engineers. In the present paper, a pseudo-dynamic method, which considers the effect of phase difference in both the shear and primary waves travelling through the backfill due to seismic excitation, is considered to obtain the minimum length of the geosynthetic reinforcement to resist direct sliding and overturning failure of the reinforced soil wall. A two-part wedge mechanism is used for determining the external stability of the reinforced soil wall against direct sliding. Reinforced soil walls with cohesionless backfill soil are considered in the present analysis. Results are presented in both graphical and tabular form to show the required length of the geosynthetic reinforcement to maintain the external stability of the reinforced soil wall under seismic conditions. The effects of variation of parameters such as soil friction angle, horizontal and vertical seismic accelerations on the external stability of the reinforced soil wall have been studied. With increase of seismic accelerations in both the horizontal and vertical directions, the external stability of the reinforced soil wall decreases significantly and a greater length of geosynthetic reinforcement is needed to maintain the external stability of the wall. For most practical cases, the minimum length required to resist direct sliding failure is found to govern the design rather than overturning failure under seismic conditions. Comparisons of the present results with available pseudo-static results found in the literature are shown, and the improvements using the proposed pseudo-dynamic approach are highlighted.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3