3D Modeling of Blood Flow in Simulated Abdominal Aortic Aneurysm

Author:

Gonzalez-Urquijo Mauricio1ORCID,de Zamacona Raul Garza2,Mendoza Ana Karen Martinez2,Iribarren Miranda Zamora2,Ibarra Erika Garza2,Bencomo Marcos David Moya2,Fabiani Mario Alejandro1ORCID

Affiliation:

1. Tecnologico de Monterrey, School of Medicine and Health Sciences, Nuevo Leon, Mexico

2. Tecnologico de Monterrey, School of Engineering and Sciences, Nuevo Leon, Mexico

Abstract

Background: Besides biological factors, abdominal aortic aneurysm rupture is also caused by mechanical parameters, which are constantly affecting the wall’s tissue due to their abnormal values. The ability to evaluate these parameters could vastly improve the clinical treatment of patients with abdominal aortic aneurysms. The objective of this study was to develop and demonstrate a methodology to analyze the fluid dynamics that cause the wall stress distribution in abdominal aortic aneurysms, using accurate 3D geometry and a realistic, nonlinear, elastic biomechanical model using a computer-aided software. Methods: The geometry of the abdominal aortic aneurysm; was constructed on a 3D scale using computer-aided software SolidWorks (Dassault Systems SolidWorksCorp., Waltham MA). Due to the complex nature of the abdominal aortic aneurysm geometry, the physiological forces and constraints acting on the abdominal aortic aneurysm wall were measured by using a simulation setup using boundary conditions and initial conditions for different studies such as finite element analysis or computational fluid dynamics. Results: The flow pattern showed an increase velocity at the angular neck, followed by a stagnated flow inside the aneurysm sack. Furthermore, the wall shear stress analysis showed to focalized points of higher stress, the top and bottom of the aneurysm sack, where the flow collides against the wall. An increase of the viscosity showed no significant velocity changed but results in a slight increase in overall pressure and wall shear stress. Conclusions: Conducting computational fluid dynamics modeling of the abdominal aortic aneurysm using computer-aided software SolidWorks (Dassault Systems SolidWorksCorp., Waltham MA) proves to be an insightful approach for the clinical setting. The careful consideration of the biomechanics of the abdominal aortic aneurysm may lead to an improved, case-specific prediction of the abdominal aortic aneurysm rupture potential, which could significantly improve the clinical management of these patients.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Surgery

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3