Analysis of Aortic Arch Hemodynamics With Simulated Bird’s Beak Effects

Author:

Gonzalez-Urquijo Mauricio1ORCID,Fumagal González Gerardo Alejandro2ORCID,Cárdenas Castro Héctor Manuel2,Morales Guzman Arnulfo Alejandro2,Guzman Valladares Alan Alejandro2,MacDonald Danielle Catherine2,Moya Bencomo Marcos David2,Botello Arredondo Israel2,Fabiani Mario Alejandro1ORCID

Affiliation:

1. School of Medicine and Health Sciences,Tecnologico de Monterrey, Monterrey, México

2. School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, México

Abstract

Objective The objective of this study was to investigate the flow effects in different degrees of thoracic aortic stent graft protrusion extension by creating bird beak effect simulations using accurate 3D geometry and a realistic, nonlinear, elastic biomechanical model using computer-aided software SolidWorks. Methods Segmentation in 3D of an aortic arch from a computed tomography (CT) scan of a real-life patient was performed using SolidWorks. A parametric analysis of three models was performed: (A) Aortic arch with no stent, (B) 3 mm bird-beak configuration, and (C) 6.5 mm bird-beak configuration. Flow velocity, pressure, vorticity, wall shear stress (WSS), and time average WSS were assessed. Results The flow velocity in Model A remained relatively constant and low in the area of the ostium of the brachiocephalic artery and doubled in the left subclavian artery. On the contrary, Models B and C showed a decrease in velocity of 52.3 % in the left subclavian artery. Furthermore, Model B showed a drop in velocity of 82.7% below the bird-beak area, whereas Model C showed a decline of 80.9% in this area. The pressure inside the supra-aortic branches was higher in Model B and C compared with Model A. In Model A, vorticity only appeared at the level of the descending aorta, with low to non-vorticity in the aortic arch. In contrast, Models B and C had an average vorticity of 241.4 Hz within the bird beak area. Regarding WSS, Model A, and Model B shared similar WSS in the peak systolic phase, in the aortic arch, and the bird beak area, whereas Model C had an increased WSS by 5 Pa on average at these zones. Conclusion In the present simulations’ lower velocities, higher pressures, vortices, and WSS were observed around the bird beak zone, the aortic arch, and the supra-aortic vessels.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3