The Role of Wall Mechanics in the Hemodynamics of a Realistic Abdominal Aortic Aneurysm: A Fluid-Structure Interaction Study

Author:

Moradicheghamahi Jafar12ORCID

Affiliation:

1. University of Bordeaux, Talence, Bordeaux, France

2. Liryc-Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac, Bordeaux, France

Abstract

Abdominal aortic aneurysm (AAA) can lead to high mortality rates and further complications such as stroke or heart attack due to the risk of rupture and thrombosis. Wall mechanics play a crucial role in the development and progression of aneurysms. This study investigated the effects of wall mechanics on hemodynamic parameters in AAA to understand the risk of rupture and thrombosis. The impact of three aortic wall models (rigid, linear elastic, and hyperelastic) on structural and hemodynamic parameters was examined using CFD and FSI techniques. The blood was modeled using the Carreau non-Newtonian model, and the flow was simulated using the k-ω model. Physiological pulses were used for the velocity at the inlet and the pressure at the outlet. The results demonstrated close similarity between the predictions of the linear elastic and hyperelastic models, in contrast to the somewhat different results of the rigid model. The hyperelastic model predicted higher deformation and von Mises stress levels than the elastic model, although the difference in stress predictions was smaller than the difference in deformation predictions. The rigid model evaluated the time-averaged wall shear stress and oscillatory shear index higher than the other two models in the aneurysmal area but with a lower relative residence time. In general, the hyperelastic model predicted a higher risk of rupture than linear elastic models and a higher risk of thrombus formation than the other two models. The rigid model had the most optimistic prediction.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3