Multi-layered in vitro 3D-bone model via combination of osteogenic cell sheets with electrospun membrane interlayer

Author:

Tevlek Atakan1,Aydin Halil Murat12ORCID

Affiliation:

1. Institute of Science, Hacettepe University, Ankara, Turkey

2. Centre for Bioengineering, Hacettepe University, Ankara, Turkey

Abstract

In this study, it was aimed to present an approach for the development of multi-layered tissue engineering constructs by using cell sheet engineering. Briefly, MC3T3-E1 mouse pre-osteoblast cells were cultured in temperature-responsive plates (Nunc Upcell®) in the presence of osteogenic medium and the resulting cell sheets were laminated with electrospun poly(L-lactic acid) (PLLA) membranes to obtain viable three-dimensional, thick constructs. The constructs prepared without PLLA membranes were used as control. The cell viability and death in the resulting structures were investigated by microscopic and colorimetric methods. The in vitro performance of the structures was discussed comparatively. Alkaline phosphatase (ALP) activity, collagen and sulfated glycosaminoglycan (sGAG) content values were calculated. The presented approach shows potential for engineering applications of complex tissues with at least two or more microenvironments such as osteochondral, corneal or vascular tissues.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3