Thickening tissue by thinning electrospun scaffolds for skeletal muscle tissue engineering

Author:

Wang Shuo12,Wang Xinhuan12,Jia Minxuan123,Liu Wenli12,Gu Qi123ORCID

Affiliation:

1. Key Laboratory of Organ Regeneration and Reconstruction Institute of Zoology Chinese Academy of Sciences Beijing China

2. Beijing Institute for Stem Cell and Regenerative Medicine Beijing China

3. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractElectrospun scaffolds with aligned fiber orientation are widely used in tissue engineering, such as muscle, heart, nerve, tendon, and cartilage, due to their ability to guide cell morphology and induce cellular functions. However, the dense fibrous structure of the scaffolds poses a critical obstacle to engineering highly cellular and thick 3D tissues, as it prevents cell infiltration. While many techniques have been developed to increase the pore size of electrospun scaffolds and improve cell infiltration/migration, it often leads to a decrease in direct cell‐cell contact, compromising cell differentiation and tissue maturation. This study presents an alternative approach by reducing the thickness of scaffolds to the cellular scale and stacking or rolling the cell‐scaffold complex into 3D constructs. We devise a series of novel tools to fabricate, characterize, and manipulate ultra‐thin electrospun scaffolds, which demonstrate high reproducibility, resolution, and cellularity. Our study provides a solution to the cell infiltration issue in muscle tissue engineering and is highly versatile, and can be applied to various fields that require structures with high‐resolution gradients in a layered pattern or complex spatial distribution in a rolled pattern.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3