Recreating the heart’s helical structure-function relationship with focused rotary jet spinning

Author:

Chang Huibin1ORCID,Liu Qihan12ORCID,Zimmerman John F.1ORCID,Lee Keel Yong1ORCID,Jin Qianru1ORCID,Peters Michael M.1ORCID,Rosnach Michael1ORCID,Choi Suji1ORCID,Kim Sean L.1ORCID,Ardoña Herdeline Ann M.13ORCID,MacQueen Luke A.1,Chantre Christophe O.1,Motta Sarah E.14,Cordoves Elizabeth M.1,Parker Kevin Kit1ORCID

Affiliation:

1. Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA.

2. Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA.

3. Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA.

4. Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.

Abstract

Helical alignments within the heart’s musculature have been speculated to be important in achieving physiological pumping efficiencies. Testing this possibility is difficult, however, because it is challenging to reproduce the fine spatial features and complex structures of the heart’s musculature using current techniques. Here we report focused rotary jet spinning (FRJS), an additive manufacturing approach that enables rapid fabrication of micro/nanofiber scaffolds with programmable alignments in three-dimensional geometries. Seeding these scaffolds with cardiomyocytes enabled the biofabrication of tissue-engineered ventricles, with helically aligned models displaying more uniform deformations, greater apical shortening, and increased ejection fractions compared with circumferential alignments. The ability of FRJS to control fiber arrangements in three dimensions offers a streamlined approach to fabricating tissues and organs, with this work demonstrating how helical architectures contribute to cardiac performance.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference54 articles.

1. Twist Mechanics of the Left Ventricle

2. R. Lower Tractatus de Corde. Item de Motu & Colore Sanguinis et Chyli in eum Transitu (Allestry 1669); available at https://www.woodlibrarymuseum.org/rare-book/lower-r-tractatus-de-corde-item-de-motu-colore-sanguinis-et-chyli-in-eum-transitu-1669/.

3. Fiber Orientation and Ejection Fraction in the Human Left Ventricle

4. Effect of Fiber Geometry on Pulsatile Pumping and Energy Expenditure

5. The Overall Pattern of Cardiac Contraction Depends on a Spatial Gradient of Myosin Regulatory Light Chain Phosphorylation

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3