Alginate microspheres encapsulating hox transcript antisense RNA siRNA regulate the Hedgehog-Gli1 pathway to alleviate epidermal growth factor receptor tyrosine kinase inhibitors resistance

Author:

Lu Guojie1,Zhong Huiling1,Gao Jianwei1,Zhang Yaosen1ORCID

Affiliation:

1. Department of Cardiothoracic Surgery, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China

Abstract

The long non-coding RNA HOTAIR and the Hedgehog-Gli1 signaling pathway are closely associated with tumor occurrence and drug resistance in various cancers. However, their specific roles in the development of EGFR-TKIs resistance in non-small cell carcinoma remain unclear. To address the issue of EGFR-TKIs resistance, this study utilized the electrospray method to prepare sodium alginate microspheres encapsulating HOTAIR siRNA (SA/HOTAIR siRNA) and investigated its effects on RNA interference (RNAi) in the gefitinib-resistant cell line PC9/GR. Furthermore, the study explored whether HOTAIR could modulate EGFR-TKIs resistance through the Hedgehog-GLi1 signaling pathway. The experimental results showed that sodium alginate (SA) microspheres demonstrated excellent biocompatibility with high encapsulation efficiency and drug-loading capacity, effectively enhancing the silencing efficiency of siRNA. HOTAIR siRNA significantly inhibited the proliferation, migration, and invasion abilities of PC9/GR cells while promoting apoptosis. Additionally, HOTAIR siRNA effectively suppressed tumor growth and downregulated the Hedgehog-GLi1 pathway and anti-apoptotic proteins, which were confirmed in animal experiments. Moreover, SA/HOTAIR siRNA exhibited superior inhibition of cellular and tumor functions compared to using HOTAIR siRNA alone. Clinical research findings indicated that monitoring the expression level of HOTAIR in the serum and urine samples of NSCLC patients before and after receiving EGFR-TKIs treatment can predict the efficacy of EGFR-TKIs to a certain extent. This study provided evidence that HOTAIR siRNA effectively mitigated the development of acquired resistance to EGFR-TKIs by inhibiting the Hedgehog-GLi1 pathway. Furthermore, it introduced a reliable and long-lasting drug delivery system for combating acquired resistance to EGFR-TKIs.

Funder

Guangzhou Municipal Science and Technology Project

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3