LncRNAs LCETRL3 and LCETRL4 at chromosome 4q12 diminish EGFR-TKIs efficiency in NSCLC through stabilizing TDP43 and EIF2S1

Author:

Li Yankang,Shen Yue,Xie Mengyu,Wang Bowen,Wang Teng,Zeng Jiajia,Hua Hui,Yu Jinming,Yang MingORCID

Abstract

AbstractEpidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are effective targeted therapy drugs for advanced non-small cell lung cancer (NSCLC) patients carrying sensitized EGFR mutations. The rapid development of EGFR-TKIs resistance represents a major clinical challenge for managing NSCLC. The chromosome 4q12 is the first genome-wide association study (GWAS)-reported locus associated with progression-free survival (PFS) of NSCLC patients treated with EGFR-TKIs. However, the biological significance of the noncoding transcripts at 4q12 in NSCLC remains elusive. In the present study, we identified two 4q12 long noncoding RNAs (lncRNAs) LCETRL3 and LCETRL4 which could significantly dimmish EGFR-TKIs efficiency. In line with their oncogenic role, evidently higher LCETRL3 and LCETRL4 levels were observed in NSCLC tissues as compared with normal specimens. Importantly, lncRNA LCETRL3 can interact with oncoprotein TDP43 and inhibit ubiquitination and degradation of TDP43. Similarly, lncRNA LCETRL4 can bind and stabilize oncoprotein EIF2S1 through reducing ubiquitin-proteasome degradation of EIF2S1. In particular, elevated levels of LCETRL3 or LCETRL4 in NSCLC cells resulted in stabilization of TDP43 or EIF2S1, increased levels of NOTCH1 or phosphorylated PDK1, activated AKT signaling and, thus, EGFR-TKIs resistance. Taken together, our data revealed a novel model that integrates two lncRNAs transcribed from the 4q12 locus into the regulation of EGFR-TKIs resistance in NSCLC. These findings shed new light on the importance of functionally annotating lncRNAs in the GWAS loci and provided insights to declare novel druggable targets, i.e., lncRNAs, which may unlock the therapeutic potential of EGFR-TKIs resistant NSCLC in the clinic.

Funder

Taishan Scholar Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3