Pushing the Limits of Surface-Enhanced Raman Spectroscopy (SERS) with Deep Learning: Identification of Multiple Species with Closely Related Molecular Structures

Author:

Lebrun Alexis123,Fortin Hubert12,Fontaine Nicolas12,Fillion Daniel12,Barbier Olivier3,Boudreau Denis12ORCID

Affiliation:

1. Departement of Chemistry, Université Laval, Québec, Canada

2. Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada

3. Laboratoire de Pharmacologie Moléculaire, Axe Endocrinologie-Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada

Abstract

Raman spectroscopy is a non-destructive and label-free molecular identification technique capable of producing highly specific spectra with various bands correlated to molecular structure. Moreover, the enhanced detection sensitivity offered by surface-enhanced Raman spectroscopy (SERS) allows analyzing mixtures of related chemical species in a relatively short measurement time. Combining SERS with deep learning algorithms allows in some cases to increase detection and classification capabilities even further. The present study evaluates the potential of applying deep learning algorithms to SERS spectroscopy to differentiate and classify different species of bile acids, a large family of molecules with low Raman cross sections and molecular structures that often differ by a single hydroxyl group. Moreover, the study of these molecules is of interest for the medical community since they have distinct pathological roles and are currently viewed as potential markers of gut microbiome imbalances. A convolutional neural network model was developed and used to classify SERS spectra from five bile acid species. The model succeeded in identifying the five analytes despite very similar molecular structures and was found to be reliable even at low analyte concentrations.

Funder

Natural Sciences and Engineering Research Council of Canada

Fonds de Recherche du Québec - Nature et Technologies

Canada First Research Excellence Fund

Canada Foundation for Innovation

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3