Multi-branch attention Raman network and surface-enhanced Raman spectroscopy for the classification of neurological disorders

Author:

Xiong Changchun,Zhong Qingshan,Yan Denghui,Zhang Baihua,Yao Yudong,Qian Wei,Zheng Chengying,Mei Xi,Zhu Shanshan1ORCID

Affiliation:

1. Fujian Normal University

Abstract

Surface-enhanced Raman spectroscopy (SERS), a rapid, low-cost, non-invasive, ultrasensitive, and label-free technique, has been widely used in-situ and ex-situ biomedical diagnostics questions. However, analyzing and interpreting the untargeted spectral data remains challenging due to the difficulty of designing an optimal data pre-processing and modelling procedure. In this paper, we propose a Multi-branch Attention Raman Network (MBA-RamanNet) with a multi-branch attention module, including the convolutional block attention module (CBAM) branch, deep convolution module (DCM) branch, and branch weights, to extract more global and local information of characteristic Raman peaks which are more distinctive for classification tasks. CBAM, including channel and spatial aspects, is adopted to enhance the distinctive global information on Raman peaks. DCM is used to supplement local information of Raman peaks. Autonomously trained branch weights are applied to fuse the features of each branch, thereby optimizing the global and local information of the characteristic Raman peaks for identifying diseases. Extensive experiments are performed for two different neurological disorders classification tasks via untargeted serum SERS data. The results demonstrate that MBA-RamanNet outperforms commonly used CNN methods with an accuracy of 88.24% for the classification of healthy controls, mild cognitive impairment, Alzheimer’s disease, and Non-Alzheimer’s dementia; an accuracy of 90% for the classification of healthy controls, elderly depression, and elderly anxiety.

Funder

Natural Science Foundation of Zhejiang Province

General scientific Research Project of Zhejiang Education Department

K. C. Wong Magna Fund in Ningbo University

Ningbo City Key R&D plan "Jie Bang Gua Shuai"

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3