Conformal Prediction Based on Raman Spectra for the Classification of Chinese Liquors

Author:

Gu Jiao12,Liu Huaibo1,Ma Chaoqun1,Li Lei1,Zhu Chun1,Glorieux Christ3,Chen Guoqing12ORCID

Affiliation:

1. School of Science, Jiangnan University, Wuxi, China

2. Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China

3. Department of Physics and Astronomy, KU Leuven, Heverlee, Belgium

Abstract

This work extends the conventional back-propagation neural network (BPNN) to the classification of Chinese liquors of different flavors according to their Raman spectra. Conformal prediction is applied to assign reliable confidence measures for each classification and support an effective framework to make the machine learning on classification trustable. The BPNN can be used to predict the flavors of Chinese liquors according to their Raman spectra, and a classification rate of 88.96% can be achieved. In order to evaluate each classification, a non-conformity score is defined to generate a P-value for each classification. Moreover, the validity of conformal prediction in online mode is discussed. The number of cumulative errors in the conformal prediction is much less than that without conformal prediction. The relationship between the cumulative error and confidence levels shows that a high confidence level leads to low cumulative errors, but many cumulative errors will occur under a very high confidence level. The result implies that conformal prediction is a useful framework, which can employ classification satisfying a certain level of confidence. Meanwhile, the conformal prediction can improve our classification using a BPNN, when the number of data points is limited.

Funder

The national first-class discipline program of Food Science and Technology

The National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3