Which noncognitive features provide more information about reading performance? A data-mining approach to big educational data

Author:

Aricak Osman Tolga1ORCID,Guldal Hakan2,Erdogan Irfan3

Affiliation:

1. Department of Psychology, Hasan Kalyoncu University, Gaziantep, Turkey

2. Department of Computer and Instructional Technologies, Trakya University, Edirne, Turkey

3. Dean of School of Education, Bogazici University, Istanbul, Turkey

Abstract

The purpose of this study is to discover which noncognitive variables provide more information about reading performance. To answer this question, data mining based on information gain, decision tree and random forest methods were utilized in the study. The participants of the study consisted of 606,627 15-year-old students (49.8% female) in a total of 78 countries or economies, 37 of which are OECD members. Reading performance and plausible values of reading, the Student, ICT Familiarity, Financial Literacy, Educational Career, Well-Being and Parent Questionnaire data in PISA 2018 were analyzed to answer the research questions. When 108 features were analyzed as independent variables, it was found that SES (home possessions, cultural possessions, and ICT resources at home), metacognitive skills (assessing credibility and summarizing), and liking/enjoying reading were major variables predicting reading performance. The path analysis revealed that these variables explain 53.3% of the variability in reading performance. It is also remarkable that the decision tree model has a 74.61% accuracy value in estimating the reading performance.

Publisher

SAGE Publications

Subject

General Psychology,General Social Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3