Multivariate and machine learning approaches for honey botanical origin authentication using near infrared spectroscopy

Author:

Bisutti Vittoria1,Merlanti Roberta2,Serva Lorenzo1ORCID,Lucatello Lorena2,Mirisola Massimo1,Balzan Stefania2,Tenti Sandro1,Fontana Federico2,Trevisan Giulia1,Montanucci Ludovica2,Contiero Barbara1,Segato Severino1,Capolongo Francesca2

Affiliation:

1. Department of Animal Medicine, Production and Health, Padova University, Padova, Italy

2. Department of Comparative Biomedicine and Food Science, Padova University, Padova, Italy

Abstract

In this work the feasibility of near infrared spectroscopy was evaluated combined with chemometric approaches, as a tool for the botanical origin prediction of 119 honey samples. Four varieties related to polyfloral, acacia, chestnut, and linden were first characterized by their physical–chemical parameters and then analyzed in triplicate using a near infrared spectrophotometer equipped with an optical path gold reflector. Three different classifiers were built on distinct multivariate and machine learning approaches for honey botanical classification. A partial least squares discriminant analysis was used as a first approach to build a predictive model for honey classification. Spectra pretreatments named autoscale, standard normal variate, detrending, first derivative, and smoothing were applied for the reduction of scattering related to the presence of particle size, like glucose crystals. The values of the descriptive statistics of the partial least squares discriminant analysis model allowed a sufficient floral group prediction for the acacia and polyfloral honeys but not in the cases of chestnut and linden. The second classifier, based on a support vector machine, allowed a better classification of acacia and polyfloral and also achieved the classification of chestnut. The linden samples instead remained unclassified. A further investigation, aimed to improve the botanical discrimination, exploited a feature selection algorithm named Boruta, which assigned a pool of 39 informative averaged near infrared spectral variables on which a canonical discriminant analysis was assessed. The canonical discriminant analysis accounted a better separation of samples according to the botanical origin than the partial least squares discriminant analysis. The approach used has permitted to achieve a complete authentication of the acacia honeys but not a precise segregation of polyfloral ones. The comparison between the variables important in projection and the Boruta pool showed that the informative wavelengths are partially shared especially in the middle and far band of the near infrared spectral range.

Funder

Università degli Studi di Padova

Fondazione CARIVERONA

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3