Simulation and in vivo investigation of light-emitting diode, near infrared Gaussian beam profiles

Author:

Mirbagheri Mahya1,Hakimi Naser1ORCID,Ebrahimzadeh Elias1234,Setarehdan S Kamaledin1

Affiliation:

1. Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran

2. Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada

3. Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

4. Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada

Abstract

Near infrared spectroscopy is an optical imaging technique which offers a non-invasive, portable, and low-cost method for continuously measuring the oxygenation of tissues. In particular, it can provide the brain activation through measuring the blood oxygenation and blood volume in the cortex. Understanding and then improving the spatial and depth sensitivity of near infrared spectroscopy measurements to brain tissue are essential for designing experiments as well as interpreting research findings. In this study, we investigate the effect of applying two common light beam profiles including Uniform and Gaussian on the penetration depth of an LED-based near infrared spectroscopy. In this regard, two Gaussian profiles were produced by adjusting plano-convex and bi-convex lenses and the Uniform profile was provided by applying a flat lens. Two experiments were conducted in this study. First, a simulation experiment was carried out based on scanning the intra space of a liquid phantom by using static and pulsating absorbers to compare the penetration depth of the configurations applied on the LED-based near infrared spectroscopy with that of a laser-based near infrared spectroscopy. Second, to show the feasibility of the best proposed configuration applied, an in vivo experiment of stress assessment has been performed and its results have been compared with that results obtained by laser one. The results showed that the LED-based near infrared spectroscopy equipped with bi-convex lens provides a penetration depth and hence quality measurements of near infrared spectroscopy and its extracted heart rate variability signals as well as laser-based near infrared spectroscopy especially in the application of stress assessment.

Publisher

SAGE Publications

Subject

Spectroscopy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3