PREDICTING CLINICAL RESPONSE TO TRANSCRANIAL MAGNETIC STIMULATION IN MAJOR DEPRESSION USING TIME-FREQUENCY EEG SIGNAL PROCESSING

Author:

Ebrahimzadeh Elias12ORCID,Asgarinejad Mostafa3,Saliminia Sarah4,Ashoori Sarvenaz4,Seraji Masoud5

Affiliation:

1. CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran

2. School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

3. Institute for Cognitive Sciences Studies, Tehran, Iran

4. Biomedical Engineering Department, School of Electrical Engineering, Payame Noor University of North Tehran, Tehran, Iran

5. Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA

Abstract

Repetitive transcranial magnetic stimulation (rTMS) is defined as a noninvasive technique of brain stimulation conducted for both diagnostic and therapeutic purposes. rTMS can effectively excite the brain neurons and increase brain plasticity, which becomes particularly useful in psychiatric and neurological fields. Biomarkers that predict clinical outcomes in depression are essential for increasing the precision of treatments and clinical outcomes. The electroencephalogram (EEG) is a noninvasive neurophysiological test that is promising as a biomarker sensitive to treatment effects. The aim of our study was to investigate a novel nonlinear index of the resting state EEG activity as a predictor of clinical outcome and compare its predictive capacity to traditional frequency-based indices. EEG was recorded from 50 patients with treatment resistant depression (TRD) and 24 healthy comparison (HC) subjects. TRD patients were treated with excitatory rTMS to the dorsolateral prefrontal cortex (DLPFC) for 4–6 weeks. EEG signals were first decomposed using the ICA algorithm and the extracted components were then processed by time-frequency analysis. We then go on to compare the participants’ depression severity before, after, and 2 months after finishing the last treatment session using the proposed rTMS therapy. Absolute powers (APs), band powers (BPs), and theta and beta band entropies (BAs), which were extracted from the EEG, are used as features for the classification of changes in patients and normal cases after applying rTMS. Accordingly, we can go beyond the Beck score and clinically classify the EEG signal into two classes: depression and normal. The results demonstrated 78.37%, 74.32%, and 82.43% accuracy for artificial neural network (ANN), [Formula: see text]-nearest neighbor (KNN), and support vector machine (SVM) classifiers, respectively, indicating the superiority of the proposed method to those mentioned in similar studies. Also, the electrophysiological changes are shown to be evident in patients with major depression. Our data show that the time-frequency index yields superior outcome prediction performance compared to the traditional frequency band indices. Our findings warrant further investigation of EEG-based biomarkers in depression.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3