Fourier-transform near infrared spectroscopy and chemometrics for discrimination of cold-pressed oils and determination of their chemical parameters

Author:

Gliszczyńska-Świgło Anna1,Jajor Żaneta1,Kmiecik Dominik2

Affiliation:

1. Faculty of Commodity Science, Poznań University of Economics and Business, Poznań, Poland

2. Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland

Abstract

Principal component analysis was performed to discriminate commercial cold-pressed cosmetic oils based on their Fourier-transform near infrared spectroscopy spectra and chemical parameters such as the composition of fatty acids, content of tocopherols, total carotenoids, polyphenols, and chlorophylls, as well as calculated oxidizability and iodine values. It was found that the oils analyzed differed significantly in the chemical composition. The level of total unsaturated fatty acids ranged from 74.0 to 93.4%. The content of carotenoids in oils ranged from 3.1 to 197.1 mg/kg, total chlorophylls from 0.04 to 46.3 mg/kg, and total phenolics from 36 to 596 mg/kg. The oils tested differed also in the content of tocopherols (from 11 to 3836 mg/kg). Principal component analysis based on Fourier-transform near infrared spectroscopy spectra revealed a different pattern of discrimination of the oils compared to principal component analysis based on the chemical parameters. However, using partial least squares regression, good correlations were found between Fourier-transform near infrared spectroscopy spectra and the contribution of linoleic acid (18:2), monounsaturated fatty acids, polyunsaturated fatty acids, unsaturated fatty acids, calculated oxidizability, or calculated iodine values. Good models with coefficients of determination not lower than 0.989 and with low root-mean-square error for cross-validation were obtained when the range from 4800 to 4500 cm−1 was applied. Values of residual predictive deviation for these models were higher than 3.0 indicating very good prediction accuracy. The models obtained were successfully used to predict these parameters for new selected oils.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3