Bayesian Global Optimization Gated Recurrent Unit Model for Human-Driven Vehicle Lane-Change Trajectory Prediction Considering Hyperparameter Optimization

Author:

Hu Xinghua1,Chen Shanzhi1,Zhao Jiahao1ORCID,Cao Yanshi2ORCID,Wang Ran3,Zhang Tingting1,Long Bing4,Xu Yimei1,Chen Xinghui1,Zheng Mintanyu1,Guo Jianpu5

Affiliation:

1. School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing, China

2. Chengdu Public Transport Group Co., Ltd, Chengdu, China

3. Chongqing YouLiang Science and Technology Co., Ltd., Chongqing, China

4. Institute of Chongqing Transport Planning, Chongqing, China

5. Chongqing Productivity Council, Chongqing, China

Abstract

To address the low accuracy and inefficiency of current lane-change trajectory prediction methods for human-driven vehicles, this study develops a neural network lane-change trajectory prediction model with hyperparametric optimization capability using Bayesian optimization and gated recurrent units to consider the effect of lane-change intention on vehicle lane-change behavior and to predict it. The proposed model was instantiated using trajectory data of 8,721 vehicles. The results show that the overall recognition accuracy of intention recognition under the optimal input is 93.54%, and the recognition accuracy of keeping straight, left lane-change and right lane-change is 95.59%, 91.72%, and 93.30%, respectively. The root mean square errors of the predicted and actual trajectories to the left and to the right under the optimal input are 0.2582 and 0.2957, respectively. This paper demonstrates that, for the intention recognition module, the low-dimensional input enables the model to obtain high prediction accuracy, while for the trajectory prediction module, the high-latitude input enables the model to obtain a low prediction error. The developed trajectory prediction model can be used to assist in driving decision-making, path planning, and so forth.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3