Application of Trajectory Data for Investigating Vehicle Behavior in Mixed Traffic Environment

Author:

Raju Narayana1,Kumar Pallav1,Jain Aayush1,Arkatkar Shriniwas S.1,Joshi Gaurang1

Affiliation:

1. Civil Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India

Abstract

The research work reported here investigates driving behavior under mixed traffic conditions on high-speed, multilane highways. With the involvement of multiple vehicle classes, high-resolution trajectory data is necessary for exploring vehicle-following, lateral movement, and seeping behavior under varying traffic flow states. An access-controlled, mid-block road section was selected for video data collection under varying traffic flow conditions. Using a semi-automated image processing tool, vehicular trajectory data was developed for three different traffic states. Micro-level behavior such as lateral placement of vehicles as a function of speed, instant responses, vehicle-following behavior, and hysteresis phenomenon were evaluated under different traffic flow states. It was found that lane-wise behavior degraded with increase in traffic volume and vehicles showed a propensity to move towards the median at low flow and towards the curb-side at moderate and heavy flows. Further, vehicle-following behavior was also investigated and it was found that with increase in flow level, vehicles are more inclined to mimic the leader vehicle’s behavior. In addition to following time, perceiving time of subject vehicle for different leading vehicles was also evaluated for different vehicle classes. From the analysis, it was inferred that smaller vehicles are switching their leader vehicles more often to escape from delay, resulting in less following and perceiving time and aggressive gap acceptance. The present research work reveals the need for high-quality, micro-level data for calibrating driving behavior models under mixed traffic conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3