Multi-Vehicle Trajectory Design During Cooperative Adaptive Cruise Control Platoon Formation

Author:

Wang Qinzheng1,Yang Xianfeng (Terry)1,Huang Zhitong2,Yuan Yun1

Affiliation:

1. Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, UT

2. Leidos Inc., Saxton Transportation Operations Laboratory, Reston, VA

Abstract

Cooperative adaptive cruise control (CACC) organizes connected and automated vehicles (CAVs) in platoons to improve traffic flow and reduce fuel consumption. Platoon formation involves a very complex process, however, because lateral and longitudinal misbehavior of CAVs results in greater fuel consumption and risk of collision. This study aims to design optimal vehicle trajectories of CAVs during CACC platoon formation. First, a basic scenario and a destination-based protocol are described to determine vehicle sequence in the platoon. A space-time lattice based model is then formulated to construct vehicle trajectories considering boundary conditions of kinematic limits, vehicle-following safety, and lane-changing rules. The objective is to optimize the vehicle sequence and fuel consumption simultaneously. A two-phase algorithm is proposed to solve this model, where the first phase is a heuristic algorithm that determines vehicle sequence and in the second phase dynamic programming is adapted to optimize fuel consumption based on the determined sequence. To evaluate the effectiveness of the proposed model in designing CAV trajectories, extensive experimental tests have been conducted in this study. Results show that the proposed model and algorithm can effectively optimize CAV sequence in the platoon based on their destinations. After optimization, CAV fuel consumption was reduced by 42%, 46%, and 43%, respectively, in three different tested scenarios.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From da Vinci to cybersecurity: tracing the evolution of autonomous vehicles and ensuring safe platooning operations;Discover Mechanical Engineering;2024-07-23

2. A Hybrid Intelligent Controller for Extended-Range Electric Vehicles;Engineering, Technology & Applied Science Research;2024-04-02

3. Deep Q-Network-Enabled Platoon Merging Approach for Autonomous Vehicles;Transportation Research Record: Journal of the Transportation Research Board;2023-10-27

4. An autonomous platoon formation strategy to optimize CAV car-following stability under periodic disturbance;Physica A: Statistical Mechanics and its Applications;2023-09

5. Centralized vehicle trajectory planning on general platoon sorting problem with multi-vehicle lane changing;Transportation Research Part C: Emerging Technologies;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3