Affiliation:
1. California Partners for Advanced Transportation and Technology, University of California, Berkeley, Richmond Field Station, 1357 South 46th Street, Building 452, Richmond, CA 94804-4648.
2. Turner–Fairbank Highway Research Center, Federal Highway Administration, 6300 Georgetown Pike, McLean, VA 22101.
Abstract
Cooperative adaptive cruise control (CACC) includes multiple concepts of communication-enabled vehicle following and speed control. Definitions and classifications are presented to help clarify the distinctions between types of automated vehicle-following control that are often conflated with each other. A distinction is made between vehicle-to-vehicle (V2V) CACC, based on vehicle–vehicle cooperation, and infrastructure-to-vehicle CACC, in which the infrastructure provides information or guidance to the CACC system (such as the target set speed value). In V2V CACC, communication provides enhanced information so that vehicles can follow their predecessors with higher accuracy, faster response, and shorter gaps; the result would be enhanced traffic flow stability and possibly improved safety. A further distinction is made between CACC, which uses constant-time-gap vehicle following (forming CACC strings), and automated platooning, which uses tightly coupled, constant-clearance, vehicle-following strategies. Although adaptive cruise control (ACC) and CACC are examples of Level 1 automation as defined by both SAE and NHTSA, the vehicle-following performance that can be achieved under each scenario is representative of the performance that should be expected at higher levels of automation. Implementation of CACC in practice will also require consideration of more than the lowest level of vehicle-following and speed regulation performance. Because CACC requires interactions between adjacent equipped vehicles, strategies are needed such as ad hoc, local, or global coordination to cluster CACC vehicles. Some of the challenges that must be overcome to implement the clustering strategies are discussed as well as strategies for separating CACC clusters as they approach their destinations, as potential traffic improvements from CACC will be negated if the vehicles cannot disperse effectively.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
287 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献