Evaluating the Durability of Lime-Stabilized Soil Mixtures using Soil Mineralogy and Computational Geochemistry

Author:

Akula Pavan1,Naik Saureen Rajesh1,Little Dallas N.1

Affiliation:

1. Zachry Department of Civil Engineering, Texas A&M University, College Station, TX

Abstract

Lime stabilization is a common technique used to improve the engineering properties of clayey soils. The process of lime stabilization can be split into two parts. First, the mobilization and crowding of [Formula: see text] ions or [Formula: see text]molecules from hydrated lime at net negative surface charge sites on expansive clay colloids. Second, the formation of pozzolanic products including calcium-silicate-hydrate (C-S-H) because of reactions within lime-soil mixtures. The pozzolanic reaction is generally considered to be more durable, while the [Formula: see text] adsorption has been associated with more easily reversible consistency changes. This study offers a protocol to assess whether the stabilization process is dominated by durable C-S-H (pozzolanic) reactions or a combination of cation exchange and pozzolanic reactions. Expansive clays with plasticity indices >45% from a major highway project in Texas are the focus of lime treatment in this study. The protocol consists of subjecting lime-soil mixtures to a reasonable curing period followed by a rigorous but realistic durability test and investigating the quality and quantity of the pozzolanic reaction product. Mineralogical analyses using quantitative X-ray diffraction (XRD) and thermogravimetric analysis (TGA) indicates the formation of different forms of C-S-H. In addition, geochemical modeling is used to simulate the lime-soil reactions and evaluate the effect of pH on the stability of C-S-H. The results indicate C-S-H with Ca/Si ratio of 0.66 as most the stable form of C-S-H among other forms with Ca/Si ratio ranging from 0.66 to 2.25. The effect of reducing equilibrium pH on C-S-H is also evaluated. A reduction in pH favored dissolution of all forms of C-S-H indicating the need to maintain a pH ≥ 10.

Funder

Grand Parkway Infrastructure, LLC

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3