Accelerated Moisture Conditioning Process of Lime-Stabilized Clays

Author:

Celaya Manuel1,Veisi Maryam1,Nazarian Soheil1,Puppala Anand J.2

Affiliation:

1. Center for Transportation Infrastructure Systems, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968.

2. Department of Civil and Environmental Engineering, Box 19308, University of Texas at Arlington, Arlington, TX 76019.

Abstract

Lime stabilization is a common procedure currently used in road construction. This technique is particularly attractive for improving the subgrade material for low-volume unpaved or low-cost paved roads. Selection of the proper concentration of lime for stabilization of clays is primarily based on achieving a target pH value. A number of parameters—such as the interaction between the mineralogy of the clay materials and the additives in the presence or absence of moisture, construction methods, and curing processes—significantly affect the performance of stabilized clays. If the selected concentration of additives is not adequate to ensure shortand long-term strength and durability, the stabilization will be ineffective, and pavement rehabilitations, requiring costly repairs and road closures, will be necessary. Many state highway agencies supplement this design process with other tests to ensure that proper strength, stiffness, and durability can be achieved. The most common parameter considered for this purpose is the unconfined compressive strength of laboratory-prepared specimens that are cured for several days and subjected to capillary moisture conditioning for several additional days. This procedure is perceived as time-consuming to implement. To establish whether the stabilization method is effective in field construction projects, this paper addresses some shortcomings in the current protocols. Several accelerated testing methods that could potentially minimize the time required for soil specimen preparation, curing, conditioning, and testing to complete the stabilizer design process are evaluated. From this study, the most appropriate method was found to be backpressure saturation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Use of Taguchi method to evaluate the unconfined compressive strength of quicklime stabilized silty clayey subgrade;Case Studies in Construction Materials;2022-12

2. Evaluating the Durability of Lime-Stabilized Soil Mixtures using Soil Mineralogy and Computational Geochemistry;Transportation Research Record: Journal of the Transportation Research Board;2021-04-30

3. Simple Empirical Guide to Pavement Design of Low-Volume Roads in Indiana;Transportation Research Record: Journal of the Transportation Research Board;2015-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3