Experimental Study of Thermal Conductivity in Soil Stabilization for Sustainable Construction Applications

Author:

Muhudin Abdullahi Abdulrahman1ORCID,Zami Mohammad Sharif12ORCID,Budaiwi Ismail Mohammad3,Abd El Fattah Ahmed12ORCID

Affiliation:

1. Architecture and City Design (ACD) Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

2. Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

3. Architectural Engineering and Construction Management Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

Abstract

Soils in Saudi Arabia are emerging as potential sustainable building materials, a notion central to this study. The research is crucial for advancing construction practices in arid areas by enhancing soil thermal properties through stabilization. Focusing on Hejaz region soils, the study evaluates the impact of stabilizers such as cement, lime, and cement kiln dust (CKD) on their thermal behavior. This investigation, using two specific soil types designated as Soil A and Soil B, varied the concentration of additives from 0% to 15% over a 12-week duration. Employing a TLS-100 for thermal measurements, it was found that Soil A, with a 12.5% cement concentration, showed a significant 164.54% increase in thermal conductivity. When treated with 2.5% lime, Soil A reached a thermal conductivity of 0.555 W/(m·K), whereas Soil B exhibited a 53.00% decrease under similar lime concentration, reflecting diverse soil responses. Notably, a 15% CKD application in Soil A led to an astounding 213.55% rise in thermal conductivity, with Soil B recording an 82.7% increase. The findings emphasize the substantial influence of soil stabilization in improving the thermal characteristics of Hejaz soils, especially with cement and CKD, and, to a varying extent. This study is pivotal in identifying precise, soil-specific stabilization methods in Saudi Arabia’s Hejaz region, essential for developing sustainable engineering applications and optimizing construction materials for better thermal efficiency.

Funder

Interdisciplinary Research Center for Construction and Building Materials

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3