Affiliation:
1. School of Aviation and Transportation Technology, Purdue University, West Lafayette, IN
Abstract
Flight data mining enables airport owners, operators, and governmental entities to explore more intelligent management strategies; in particular, cost-effectively obtaining accurate operational data is beneficial for general aviation (GA) airports and their associated communities. The current data collection modus operandi, however, does not meet future needs, as aircraft operations are counted manually or estimated by sampling methods. The increasing traffic flow and limited available personnel at most GA airports make it unrealistic to continue using traditional methods to analyze aircraft operational statistics; therefore, a customized approach is needed to address this problem. Since different flight phases have different levels and types of impact on the environment, acquiring information related to the duration of each flight phase at the airport and within its surrounding airspace is critical to the assessment of emissions and noise pollution from aircraft. The primary goal of the research is to provide quantified inputs for the environmental evaluation model, such as the Aviation Environmental Design Tool (AEDT). This paper demonstrates a programmed framework that successfully achieves satisfactory performance in solving flight phase identification problems by testing the synthetic flight data as well as validating the empirical Automatic Dependent Surveillance-Broadcast (ADS-B) data. The experimental results suggest that the proposed methods achieve promising classification accuracy, leading to feasible deployment in airport operations.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献