Study on Machine Learning Methods for General Aviation Flight Phase Identification

Author:

Fala Nicoletta1ORCID,Georgalis Georgios2ORCID,Arzamani Nastaran1

Affiliation:

1. Oklahoma State University, Stillwater, Oklahoma 74078

2. Tufts University, Medford, Massachusetts 02155

Abstract

Accurate identification of phases of flight is an essential step in analyses such as airport operation counts, fuel burn estimation, and safety studies. Past research has focused primarily on using positional data with rule-based or probabilistic-based decision-making to identify the phases of flight. Many of these efforts note that the task of correctly identifying phases of flight is challenging, often requiring extreme fine-tuning of methods. In this paper, we initially study whether combinations of dimensionality reduction of flight data records from general aviation aircraft impact clustering into the correct flight phases (climb, cruise, or descent) without any preprocessing or fine-tuning. For dimensionality reduction, we considered the low variance filter, the high correlation filter, principal component analysis, and autoencoders. We found that these dimensionality reduction algorithms do not offer any benefit for the phase identification task, as compared to feature selection that simply omits engine-specific features. For the clustering task, we considered [Formula: see text]-means and Gaussian mixture models. After performing clustering on eight test flights, we conclude that both methods are adequate at identifying the phases of flight in various general aviation flights and yield similar results.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering

Reference22 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase of Flight Classification in Aviation Safety Using LSTM, GRU, and BiLSTM: A Case Study with ASN Dataset;2023 International Conference on High Performance Big Data and Intelligent Systems (HDIS);2023-12-06

2. Aviation Safety Enhancement via NLP & Deep Learning: Classifying Flight Phases in ATSB Safety Reports;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3