Prediction of Lane-Changing Maneuvers with Automatic Labeling and Deep Learning

Author:

Mahajan Vishal1,Katrakazas Christos2,Antoniou Constantinos1

Affiliation:

1. Department of Civil, Geo, and Environmental Engineering, Technical University of Munich, Munich, Germany

2. Department of Transportation Planning and Engineering, National Technical University of Athens, Athens, Greece

Abstract

Highway safety has attracted significant research interest in recent years, especially as innovative technologies such as connected and autonomous vehicles (CAVs) are fast becoming a reality. Identification and prediction of driving intention are fundamental for avoiding collisions as it can provide useful information to drivers and vehicles in their vicinity. However, the state-of-the-art in maneuver prediction requires the utilization of large labeled datasets, which demand a significant amount of processing and might hinder real-time applications. In this paper, an end-to-end machine learning model for predicting lane-change maneuvers from unlabeled data using a limited number of features is developed and presented. The model is built on a novel comprehensive dataset (i.e., highD) obtained from German highways with camera-equipped drones. Density-based clustering is used to identify lane-changing and lane-keeping maneuvers and a support vector machine (SVM) model is then trained to learn the boundaries of the clustered labels and automatically label the new raw data. The labeled data are then input to a long short-term memory (LSTM) model which is used to predict maneuver class. The classification results show that lane changes can efficiently be predicted in real-time, with an average detection time of at least 3 s with a small percentage of false alarms. The utilization of unlabeled data and vehicle characteristics as features increases the prospects of transferability of the approach and its practical application for highway safety.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Behavioral Intention Prediction in Driving Scenes: A Survey;IEEE Transactions on Intelligent Transportation Systems;2024-08

2. Multi-Level Feature Extraction and Classification for Lane Changing Behavior Prediction and POD-Based Evaluation;Automation;2024-07-22

3. A Deep Learning Framework to Explore Influences of Data Noises on Lane-Changing Intention Prediction;IEEE Transactions on Intelligent Transportation Systems;2024-07

4. Vehicle Behavior Prediction by Episodic-Memory Implanted NDT;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. Learning two-dimensional merging behaviour from vehicle trajectories with imitation learning;Transportation Research Part C: Emerging Technologies;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3