A survey on motion prediction and risk assessment for intelligent vehicles

Author:

Lefèvre Stéphanie,Vasquez Dizan,Laugier Christian

Abstract

Abstract With the objective to improve road safety, the automotive industry is moving toward more “intelligent” vehicles. One of the major challenges is to detect dangerous situations and react accordingly in order to avoid or mitigate accidents. This requires predicting the likely evolution of the current traffic situation, and assessing how dangerous that future situation might be. This paper is a survey of existing methods for motion prediction and risk assessment for intelligent vehicles. The proposed classification is based on the semantics used to define motion and risk. We point out the tradeoff between model completeness and real-time constraints, and the fact that the choice of a risk assessment method is influenced by the selected motion model.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Reference75 articles.

1. Rajamani R (2006) Vehicle dynamics and control. Birkhauser.

2. Brännström M, Coelingh E, Sjöberg J: Model-based threat assessment for avoiding arbitrary vehicle collisions. IEEE Trans on Intell Transportation Syst 2010,11(3):658–669. 10.1109/TITS.2010.2048314

3. Lin C-F, Ulsoy AG, LeBlanc DJ: Vehicle dynamics and external disturbance estimation for vehicle path prediction. IEEE Trans on Control Syst Technol 2000,8(3):508–518. 10.1109/87.845881

4. Huang J, Tan H-S (2006) Vehicle future trajectory prediction with a DGPS/INS-based positioning system In: Proc. American control conference, 5831–5836.

5. Pepy R, Lambert A, Mounier H (2006) Reducing navigation errors by planning with realistic vehicle model In: Proc. IEEE intelligent vehicles symposium, 300–307.

Cited by 541 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A digital twin dynamic migration method for industrial mobile robots;Robotics and Computer-Integrated Manufacturing;2025-04

2. Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction;Transportation Research Part E: Logistics and Transportation Review;2024-11

3. Collision Probability Field Based Interaction-Aware Longitudinal Motion Prediction;IEEE Transactions on Intelligent Transportation Systems;2024-09

4. A Full Transfer Learning LSTM-Based Fractional Order Optimization Method of GM(r,2) for Inferring Driving Intention;IEEE Transactions on Intelligent Transportation Systems;2024-09

5. Next-gen Urban Buses: Autonomy and Connectivity;2024-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3