Multi-Level Feature Extraction and Classification for Lane Changing Behavior Prediction and POD-Based Evaluation

Author:

Rastin Zahra1,Söffker Dirk1ORCID

Affiliation:

1. Chair of Dynamics and Control, University of Duisburg-Essen, 47057 Duisburg, Germany

Abstract

Lane changing behavior (LCB) prediction is a crucial functionality of advanced driver-assistance systems and autonomous vehicles. Predicting whether or not the driver of a considered ego vehicle is likely to change lanes in the near future plays an important role in improving road safety and traffic efficiency. Understanding the underlying intentions behind the driver’s behavior is an important factor for the effectiveness of assistance and monitoring systems. Machine learning (ML) algorithms have been broadly used to predict this behavior by analyzing datasets of traffic and driving data related to the considered ego vehicle. However, this technology has not yet been widely adopted in commercial products. Further improvements in these algorithms are necessary to enhance their robustness and reliability. In some domains, receiver operating characteristic and precision-recall curves are commonly used to evaluate ML algorithms, not considering the effects of process parameters in the evaluation, while it might be necessary to access the performance of these algorithms with respect to such parameters. This paper proposes the use of deep autoencoders to extract multi-level features from datasets, which can then be used to train an ensemble of classifiers. This allows for taking advantage of high feature-extraction capabilities of deep learning models and improving the final result using ensemble learning techniques. The concept of probability of detection is used in combination with the networks employed here to evaluate which classifiers can detect the correct LCB better in a statistical sense. Applications on data acquired from a driving simulator show that the proposed method can be adopted to improve the reliability of the classifiers, and ensemble ANNs perform best in predicting the upcoming human behavior in this dynamical context earlier than 3 s before the event itself.

Publisher

MDPI AG

Reference46 articles.

1. (2024, May 16). World Health Organization (WHO). Available online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.

2. Human factors contributing to the road traffic accident occurrence;Zvala;Transp. Res. Procedia,2020

3. Prediction of lane-changing maneuvers with automatic labeling and deep learning;Mahajan;Transp. Res. Rec.,2020

4. Stoma, M., Dudziak, A., Caban, J., and Droździel, P. (2021). The future of autonomous vehicles in the opinion of automotive market users. Energies, 14.

5. Safety of autonomous vehicles;Wang;J. Adv. Transp.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3