Thermal efficiency of radiated tetra-hybrid nanofluid [(Al2O3-CuO-TiO2-Ag)/water]tetra under permeability effects over vertically aligned cylinder subject to magnetic field and combined convection

Author:

Adnan 1ORCID,Abbas Waseem1,Z. Bani-Fwaz Mutasem2ORCID,Kenneth Asogwa Kanayo3

Affiliation:

1. Department of Mathematics, Mohi-ud-Din Islamic University, Nerian Sharif AJ&K, Pakistan

2. Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia

3. Department of Mathematics, Nigeria Maritime University, Okerenkoko, Nigeria

Abstract

Applications The nanofluids and their upgraded version (ternary and tetra nanofluids) have a very rich thermal mechanism and convinced engineers and industrialist because of their dominant characteristics. These broadly use in chemical, applied thermal, mechanical engineering, and biotechnology. Particularly, heat transfer over a cylindrical surface is important in automobiles and heavy machinery. Purpose and Methodology Keeping in front the heat transfer applications, a model for Tetra-Composite Nanofluid [(Al2O3-CuO-TiO2-Ag)/water]tetra is developed over a vertically oriented cylinder in this study. The existing traditional model was modified with innovative effects of nonlinear thermal radiations, magnetic field, absorber surface of the cylinder, and effective thermophysical characteristics of tetra nanofluid. Then, a new heat transfer model was achieved successfully after performing some mathematical operations. Major Findings The mathematical analysis was performed via RK and determined the results graphically. The study gives suitable parametric ranges for high thermal efficiency and fluid movement. Applied magnetics forces were observed excellent to control the fluid motion, whereas curvature and buoyancy forces favor the motion. Thermal mechanism in Tetra nanofluid is dominant over ternary nanoliquid and nonlinear thermal radiations increased the heat transfer rate.

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3