Biomechanical Analysis of Jaw-closing Movements

Author:

Koolstra J.H.1,van Eijden T.M.G.J.1

Affiliation:

1. Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands

Abstract

This study concerns the complex interaction between active muscle forces and passive guiding structures during jaw-closing movements. It is generally accepted that the ligaments of the joint play a major role in condylar guidance during these movements. While these ligaments permit a wide range of motions, it was assumed that they are not primarily involved in force transmission in the joints. Therefore, it was hypothesized that muscle forces and movement constraints caused by the articular surfaces imply a necessary and sufficient condition to generate ordinary jaw-closing movements. This hypothesis was tested by biomechanical analysis. A dynamic six-degrees-of-freedom mathematical model of the human masticatory system has been developed for qualitative analysis of the contributions of the different masticatory muscles to jaw-closing movement. In simulated symmetrical jaw-closing movements, it was found that the normally observed movement, which includes a swing-slide condylar movement along the articular eminence, can be generated by various separate pairs of masticatory muscles, among which the different parts of the masseter as well as the medial pterygoid muscle appeared to be the most suitable to complete this action. The results seem to be in contrast to the general opinion that a muscle with a forward-directed force component may not be suitable for generating jaw movements in which the condyle moves backward. The results can be explained, however, by biomechanical analysis which includes not only muscle and joint forces as used in standard textbooks of anatomy, but also the torques generated by these forces.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3