Scalable Target Marketing: Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models

Author:

Bumbaca Federico (Rico),Misra Sanjog,Rossi Peter E.

Abstract

Many problems in marketing and economics require firms to make targeted consumer-specific decisions, but current estimation methods are not designed to scale to the size of modern data sets. In this article, the authors propose a new algorithm to close that gap. They develop a distributed Markov chain Monte Carlo (MCMC) algorithm for estimating Bayesian hierarchical models when the number of consumers is very large and the objects of interest are the consumer-level parameters. The two-stage and embarrassingly parallel algorithm is asymptotically unbiased in the number of consumers, retains the flexibility of a standard MCMC algorithm, and is easy to implement. The authors show that the distributed MCMC algorithm is faster and more efficient than a single-machine algorithm by at least an order of magnitude. They illustrate the approach with simulations with up to 100 million consumers, and with data on 1,088,310 donors to a charitable organization. The algorithm enables an increase of between $1.6 million and $4.6 million in additional donations when applied to a large modern-size data set compared with a typical-size data set.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Where’s Waldo? A framework for quantifying the privacy-utility trade-off in marketing applications;International Journal of Research in Marketing;2024-09

2. Efficient computation of discrete games: Estimating the effect of Apple on market structure;Production and Operations Management;2023-03-29

3. Optimizing Scalable Targeted Marketing Policies with Constraints;SSRN Electronic Journal;2023

4. Optimal Microtargeting of Advertising;Journal of Marketing Research;2022-11-16

5. Optimal Price Targeting;Marketing Science;2022-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3