Rolling bearing fault diagnosis based on improved VMD-adaptive wavelet threshold joint noise reduction

Author:

Ma Jinghua1ORCID,Li Honglei1,Tang Baoping2,Wang Jingshu1,Zou Zheng1ORCID,Zhang Mingde1

Affiliation:

1. The College of Mechanical Engineering, Chongqing University of Technology, Chongqing, China

2. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China

Abstract

Due to the fault vibration signal of the rolling bearing is greatly interfered by the background noise, the fault features are easily submerged and result in a low fault diagnosis accuracy. A novel fault diagnosis method of rolling bearing is proposed based on improved VMD-adaptive wavelet threshold combined with noise reduction in this paper. Firstly, the modal components are obtained based on VMD decomposition; Secondly, the dual determination criteria of sample entropy and correlation coefficient are constructed to filter the components; Subsequently, an adaptive wavelet thresholding function is proposed, and quadratic noise reduction is applied to mixed IMFs, which in turn reconstructs each component to achieve joint noise reduction. Finally, based on traditional machine learning and deep learning diagnosis methods, the features of noise reduction signals are extracted to realize fault diagnosis. By verifying and analyzing the simulated signal with the measured signal, noise components, the expression of fault characteristics, and the accuracy of fault diagnosis are eliminated, enhanced, and improved.

Funder

National Natural Foundation of China

Science and Technology Research Program of Chongqing Municipal Education Commission

Innovative Research Group Projects for Universities in Chongqing

Action Plan for High Quality Development of Postgraduate Education of Chongqing University of Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3