Abstract
Abstract
Rolling bearings are critical components that are prone to faults in the operation of rotating equipment. Therefore, it is of utmost importance to accurately diagnose the state of rolling bearings. This review comprehensively discusses classical algorithms for fault diagnosis of rolling bearings based on vibration signal, focusing on three key aspects: data preprocessing, fault feature extraction, and fault feature identification. The main principles, key features, application difficulties, and suitable occasions for various algorithms are thoroughly examined. Additionally, different fault diagnosis methods are reviewed and compared using the Case Western Reserve University bearing dataset. Based on the current research status in bearing fault diagnosis, future development directions are also anticipated. It is expected that this review will serve as a valuable reference for researchers aiming to enhance their understanding and improve the technology of rolling bearing fault diagnosis.
Funder
Natural Science Basic Research Program of Shaanxi
Program of State Key Laboratory of Mechanical Transmissions
National Natural Science Foundation of China
Key R&D Project in Shaanxi Province
Innovative Talents Promotion Plan in Shaanxi Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献