Trajectory tracking of in-wheel motor electric vehicles based on preview time adaptive and torque difference control

Author:

Han Wenyao1,Li Aijuan12ORCID,Huang Xin3,Li Wei1,Cao Jiaping1,Bu Haixiang1

Affiliation:

1. School of Automotive Engineering, Shan Dong Jiaotong University, Jinan, China

2. Energy and Power Engineering College, Nanjing University of Aeronautics & Astronautics, Nanjing, China

3. School of Information Science and Electrical Engineering, Shan Dong Jiaotong University, Jinan, China

Abstract

In order to improve the accuracy of trajectory tracking of in-wheel motor electric vehicles, a preview time adaptive trajectory tracking method based on iterative algorithm and fuzzy control is proposed. Firstly, based on the vehicle’s three-degree-of-freedom model, the vehicle is controlled to track trajectory based on model predictive control (MPC). The preview step size and sampling period of MPC are adjusted by iterative function and fuzzy controller, respectively. Then, In order to optimize MPC active steering control, a differential torque controller is established to realize the trajectory tracking control of differential torque steering. Finally, Carsim/Simulink co-simulation analysis and real vehicle verification are done. The simulation results show that the controller can complete the trajectory tracking control of the in-wheel motor intelligent vehicle, and the stability and steering performance are good. The controller has good robustness and adaptability according to road adhesion conditions and vehicle speed changes. At the same time, the trajectory tracking accuracy of the MPC controller is better than sliding mode variable structure control (SMC). The real vehicle verification results show that when the real vehicle tracking under different speeds, the adaptive preview time controller designed in this paper has good trajectory tracking performance and stability.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3