Road adhesion coefficient estimation by multi-sensors with LM-MMSOFNN algorithm

Author:

Wang Guiyang12,Li Shaohua1ORCID,Feng Guizhen2,Yang Zekun3

Affiliation:

1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, China

2. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, China

3. College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China

Abstract

Accurate and efficient road adhesion coefficient estimation is the premise for the proper functioning of vehicle active safety control system. With the increased application of distributed drive vehicles and on-board sensors, a multi-module self-organizing feedforward neural network (LM-MMSOFNN) based on improved Levenberg-Marquardt (LM) learning algorithm is proposed for online road adhesion coefficient estimation. In this method, the vehicle dynamics model and the Dugoff tire model were well established, and the input and output variables of the neural network model were obtained by Principal Component Analysis (PCA) method. To improve the estimation accuracy, Extended Kalman Filter (EKF) and Moving Average (MA) were used to denoise the measured signal. On this basis, a road adhesion coefficient estimation model based on multi-module self-organizing neural network was established. Both sides of road adhesion coefficients are calculated by multi-module self-organizing neural network simultaneously. Through the increase and decrease of self-organizing neurons and the improved LM learning algorithm, the computational complexity and system hardware storage are reduced, and the algorithm exhibits a good adaptability to different roads. Simulation and vehicle experiments show that the proposed method can fully extract multi-sensor information and adapt to the different road characteristics changes under driving condition. As compared with Kmeans method, it has higher estimation accuracy and stronger adaptability to varying speed.

Funder

Key Research Project of Hebei Province

National Science Foundation of China under Grant

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3