Affiliation:
1. Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
Abstract
As a mechanism for survival, quadrupeds have obtained skills involving coordination between limbs and the body (i.e. body–limb coordination), providing fast and adaptive locomotion compared with motion using only limbs. Several bio-inspired robotics studies have resulted in the development of legged robots that utilize a flexible spine, similar to cheetahs. However, the control principle of body–limb coordination has not been established to date. From the perspective of a decentralized control scheme, a minimal body–limb coordination mechanism is proposed in this study, in which body parts aid each other via a sensory feedback mechanism. The two-dimensional simulation and hardware experiments reveal that bilateral sensory feedback between limbs and body is essential for the robot to adaptively generate a body–limb coordination pattern and achieve faster locomotion speed than that by only limbs in efficient manner.
Funder
Core Research for Evolutional Science and Technology
Subject
Behavioral Neuroscience,Experimental and Cognitive Psychology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献