Multilevel Posterior Lumbar Interlaminar Fusion in Rabbits Using Bovine Bone Protein Extract Delivered by a RP-synthesized 3D Biopolymer Construct

Author:

Xing Ma 1,Yunyu Hu 2,Rong Lv 2,Jun Wang 2,Xiaoming Wu 3,Yongnian Yan 4

Affiliation:

1. Department of Orthopaedics, The First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710061, PR China,

2. Institute of Orthopaedic Surgery & Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032 PR China

3. Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an 710032, PR China

4. Key Laboratory for Advanced Materials Processing Technology Ministry of Education & Center of Organ Manufacturing Department of Mechanical Engineering, Tsinghua University Beijing 100084, PR China

Abstract

Rapid prototyping (RP)-based highly porous poly(DL-lactic-co-glycolic acid)/tricalcium phosphate (PLGA/TCP(RP)) scaffolds were fabricated. PLGA/TCP constructs (PLGA/TCP(TS)) were also made via thermally induced phase separation with solvent casting and by particulate leaching approach. Both scaffolds were loaded with bovine bone protein extract (BBPE). Sixty-four New Zealand white rabbits were randomized into four groups (groups of A, B, C, and D) and unilaterally underwent posterior lumbar interlaminar fusion at L2—L4 level. Spinal fusions were systematically evaluated. In groups of A (PLGA/TCP (RP)/BBPE constructs) and C (autogenous iliac bone grafts), good bone fusions occurred in vivo. Histological analyses indicated that endochondral ossification played an essential role in initiation of bone fusions in group A, whereas in group B (PLGA/TCP(TS)/BBPE constructs), few bone fusions were observed. In group D (PLGA/TCP(RP) scaffolds alone), the scaffolds were biocompatible and biodegradable; however, no newly formed bone mass or bone fusion was found. Twelve weeks after surgery, the fusion was significantly higher in groups of A and C compared with groups B and D (p<0.01). The PLGA/ TCP(RP)/BBPE biomaterials have potential as grafting substitutes for bone healing and spinal fusion.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3