Affiliation:
1. Institute of Laser Engineering, Beijing University of Technology, Beijing, P.R. China
Abstract
To construct a graphical neural network in vitro and explore the morphological effects of neural network structural changes on neurons, this study aimed to introduce a method for fabricating microfluidic array chips with different graphical structures based on 248-nm excimer laser one-step etching. Through the comparative analysis of the graphical neural network cultured on our microfluidic array chip with the one on the glass slide, the morphological effects of the neural network on the morphology of the neurons were studied. First, the design of the chip was completed according to the specific structure of the neurons and the simulation of the flow field. The chips were fabricated by excimer laser processing combined with the casting technology. Neurons were cultured on the chip, and a graphical neural network was formed. The growth status of the neural network was analyzed by microscopy and immunofluorescence technology, and compared with the random neural network cultured on glass slides. The results showed that the neurons on the array chips grew in microchannels, and neurites grew along the direction of the channel, interlacing to form a neural network. Furthermore, when the structure of the neural network was graphically changed, the internal neuron morphology changed: on the same culture days, the maximum length of the neurites of the graphical neural network was higher than the average length of the neurites of the random neural network. This research can provide the foundation for the exploration of the neural network mechanism of neurological diseases.
Subject
Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献