Multifunctional periodontal membrane for treatment and regeneration purposes

Author:

Isik Gulhan12ORCID,Hasirci Nesrin1234,Tezcaner Aysen125,Kiziltay Aysel26ORCID

Affiliation:

1. Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey

2. BIOMATEN-Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey

3. Department of Chemistry, Middle East Technical University (METU), Ankara, Turkey

4. Near East University, Tissue Engineering and Biomaterial Research Center, Nicosia, TRNC, Mersin 10, Turkey

5. Department of Engineering Sciences, Middle East Technical University (METU), Ankara, Turkey

6. Central Laboratory, Middle East Technical University (METU), Ankara, Turkey

Abstract

Periodontitis is a chronic inflammatory disease that causes gum tissue degeneration and alveolar bone and tooth loss. The aim of this study is to develop a multifunctional matrix for the treatment of periodontitis and enhancement of regeneration of the periodontal tissue. The matrix was prepared from vitamin E containing hydrogel made of alginate and gelatin, and doxycycline HCl containing methoxy poly(ethylene glycol)-block-polycaprolactone micelles. Methoxy poly(ethylene glycol)-block-polycaprolactone was synthesized with ring-opening polymerization technique and characterized by proton nuclear magnetic resonance (1H NMR), Fourier-transform infrared spectroscopy, differential scanning calorimetry, and gel permeation chromatography. Micelles were characterized by measuring zeta potential, hydrodynamic diameter, drug encapsulation efficiency, drug loading capacity, and in vitro drug-release kinetics. Micelles were obtained with an average size of 164 nm and drug loading amount of 5.8%. The activity of doxycycline HCl–loaded micelles and vitamin E containing hydrogels was determined against Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus) with disk diffusion method. Bio-efficacy of micelle-loaded alginate–gelatin hydrogels were tested in vitro using L929 fibroblasts and dental pulp stem cells. Doxycycline HCl–loaded micelles and vitamin E containing hydrogels showed a sustained release and exhibited inhibition zone against E. coli and S. aureus. Hydrogels with vitamin E and doxycycline HCl–loaded micelles promoted osteogenic differentiation of dental pulp stem cells. Results suggest that alginate–gelatin hydrogels containing doxycycline HCl–loaded micelles and vitamin E can be good candidates for the treatment of periodontitis and tissue regeneration.

Funder

Middle East Technical University

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3