Trapping tetracycline-loaded nanoparticles into polycaprolactone fiber networks for periodontal regeneration therapy

Author:

Khodir WK Wan Abdul1,Guarino V1,Alvarez-Perez MA1,Cafiero C2,Ambrosio L1

Affiliation:

1. Institute of Composite and Biomedical Materials, National Research Council of Italy, Naples, Italy

2. Department of Dentistry and Maxillo/Facial Surgery, Naples, Italy

Abstract

The controlled delivery of antibiotics, anti-inflammatory agents, or chemotherapeutic agents to the periodontal site is a recognized strategy to improve the efficiency of regenerative processes of hard tissues. A novel approach based on the trapping of tetracycline hydrochloride–loaded particles in polycaprolactone nanofibers was used to guide the regeneration processes of periodontal tissue at the gum interface. Chitosan nanoparticles loaded with different levels of tetracycline hydrochloride (up to 5% wt) were prepared by solution nebulization induced by electrical forces (i.e. electrospraying). The fine tuning of process parameters allows to obtain nanoparticles with tailored sizes ranging from 0.485 ± 0.147 µm to 0.639 ± 0.154 µm. The tetracycline hydrochloride release profile had a predominant burst effect for the first 70% of release followed by a relatively slow release over 24 h, which is promising for oral drug delivery. We also demonstrated that trapping tetracycline hydrochloride–loaded particles with submicrometer diameters into a polycaprolactone fiber network contributed to slowing the release of tetracycline hydrochloride from the nanoparticles, thus providing a more prolonged release in the periodontal pocket during clinical therapy. Preliminary studies on human mesenchymal stem cells confirm the viability of cells up to 5 days after culture, and thereby, validate the use of nanoparticle-/nanofiber-integrated systems in periodontal therapies.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3