A Multivariate Probit Model for Learning Trajectories: A Fine-Grained Evaluation of an Educational Intervention

Author:

Chen Yinghan1,Culpepper Steven Andrew2ORCID

Affiliation:

1. University of Nevada, Reno, USA

2. University of Illinois at Urbana–Champaign, USA

Abstract

Advances in educational technology provide teachers and schools with a wealth of information about student performance. A critical direction for educational research is to harvest the available longitudinal data to provide teachers with real-time diagnoses about students’ skill mastery. Cognitive diagnosis models (CDMs) offer educational researchers, policy makers, and practitioners a psychometric framework for designing instructionally relevant assessments and diagnoses about students’ skill profiles. In this article, the authors contribute to the literature on the development of longitudinal CDMs, by proposing a multivariate latent growth curve model to describe student learning trajectories over time. The model offers several advantages. First, the learning trajectory space is high-dimensional and previously developed models may not be applicable to educational studies that have a modest sample size. In contrast, the method offers a lower dimensional approximation and is more applicable for typical educational studies. Second, practitioners and researchers are interested in identifying factors that cause or relate to student skill acquisition. The framework can easily incorporate covariates to assess theoretical questions about factors that promote learning. The authors demonstrate the utility of their approach with an application to a pre- or post-test educational intervention study and show how the longitudinal CDM framework can provide fine-grained assessment of experimental effects.

Funder

Spencer Foundation

National Science Foundation

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3