An Optimized Bayesian Hierarchical Two-Parameter Logistic Model for Small-Sample Item Calibration

Author:

König Christoph1ORCID,Spoden Christian2ORCID,Frey Andreas13ORCID

Affiliation:

1. Goethe University Frankfurt, Germany

2. German Institute for Adult Education—Leibniz Centre for Lifelong Learning, Bonn, Germany

3. Centre for Educational Measurement at the University of Oslo (CEMO), Norway

Abstract

Accurate item calibration in models of item response theory (IRT) requires rather large samples. For instance, [Formula: see text] respondents are typically recommended for the two-parameter logistic (2PL) model. Hence, this model is considered a large-scale application, and its use in small-sample contexts is limited. Hierarchical Bayesian approaches are frequently proposed to reduce the sample size requirements of the 2PL. This study compared the small-sample performance of an optimized Bayesian hierarchical 2PL (H2PL) model to its standard inverse Wishart specification, its nonhierarchical counterpart, and both unweighted and weighted least squares estimators (ULSMV and WLSMV) in terms of sampling efficiency and accuracy of estimation of the item parameters and their variance components. To alleviate shortcomings of hierarchical models, the optimized H2PL (a) was reparametrized to simplify the sampling process, (b) a strategy was used to separate item parameter covariances and their variance components, and (c) the variance components were given Cauchy and exponential hyperprior distributions. Results show that when combining these elements in the optimized H2PL, accurate item parameter estimates and trait scores are obtained even in sample sizes as small as [Formula: see text]. This indicates that the 2PL can also be applied to smaller sample sizes encountered in practice. The results of this study are discussed in the context of a recently proposed multiple imputation method to account for item calibration error in trait estimation.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3