HBMIRT: A SAS macro for estimating uni- and multidimensional 1- and 2-parameter item response models in small (and large!) samples

Author:

Wagner WolfgangORCID,Zitzmann SteffenORCID,Hecht MartinORCID

Abstract

AbstractItem response theory (IRT) has evolved as a standard psychometric approach in recent years, in particular for test construction based on dichotomous (i.e., true/false) items. Unfortunately, large samples are typically needed for item refinement in unidimensional models and even more so in the multidimensional case. However, Bayesian IRT approaches with hierarchical priors have recently been shown to be promising for estimating even complex models in small samples. Still, it may be challenging for applied researchers to set up such IRT models in general purpose or specialized statistical computer programs. Therefore, we developed a user-friendly tool – a SAS macro called HBMIRT – that allows to estimate uni- and multidimensional IRT models with dichotomous items. We explain the capabilities and features of the macro and demonstrate the particular advantages of the implemented hierarchical priors in rather small samples over weakly informative priors and traditional maximum likelihood estimation with the help of a simulation study. The macro can also be used with the online version of SAS OnDemand for Academics that is freely accessible for academic researchers.

Funder

Eberhard Karls Universität Tübingen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3