fl-IRT-ing with Psychometrics to Improve NLP Bias Measurement

Author:

Bachmann Dominik,van der Wal Oskar,Chvojka Edita,Zuidema Willem H.,van Maanen Leendert,Schulz Katrin

Abstract

AbstractTo prevent ordinary people from being harmed by natural language processing (NLP) technology, finding ways to measure the extent to which a language model is biased (e.g., regarding gender) has become an active area of research. One popular class of NLP bias measures are bias benchmark datasets—collections of test items that are meant to assess a language model’s preference for stereotypical versus non-stereotypical language. In this paper, we argue that such bias benchmarks should be assessed with models from the psychometric framework of item response theory (IRT). Specifically, we tie an introduction to basic IRT concepts and models with a discussion of how they could be relevant to the evaluation, interpretation and improvement of bias benchmark datasets. Regarding evaluation, IRT provides us with methodological tools for assessing the quality of both individual test items (e.g., the extent to which an item can differentiate highly biased from less biased language models) as well as benchmarks as a whole (e.g., the extent to which the benchmark allows us to assess not only severe but also subtle levels of model bias). Through such diagnostic tools, the quality of benchmark datasets could be improved, for example by deleting or reworking poorly performing items. Finally, in regards to interpretation, we argue that IRT models’ estimates for language model bias are conceptually superior to traditional accuracy-based evaluation metrics, as the former take into account more information than just whether or not a language model provided a biased response.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3