Affiliation:
1. University of Illinois at Urbana–Champaign, USA
Abstract
Bayesian networks (BN) provide a convenient and intuitive framework for specifying complex joint probability distributions and are thus well suited for modeling content domains of educational assessments at a diagnostic level. BN have been used extensively in the artificial intelligence community as student models for intelligent tutoring systems (ITS) but have received less attention among psychometricians. This critical review outlines the existing research on BN in educational assessment, providing an introduction to the ITS literature for the psychometric community, and points out several promising research paths. The online appendix lists 40 assessment systems that serve as empirical examples of the use of BN for educational assessment in a variety of domains.
Subject
Psychology (miscellaneous),Social Sciences (miscellaneous)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献