Graphical Models and Computerized Adaptive Testing

Author:

Almond Russell G.,Mislevy Robert J.1

Affiliation:

1. Educational Testing Service

Abstract

Computerized adaptive testing (CAT) based on item response theory (IRT) is viewed from the perspective of graphical modeling (GM). GM provides methods for making inferences about multifaceted skills and knowledge, and for extracting data from complex performances. However, simply incorporating variables for all sources of variation is rarely successful. Thus, researchers must closely analyze the substance and structure of the problem to create more effective models. Researchers regularly employ sophisticated strategies to handle many sources of variability outside the IRT model. Relevant variables can play many roles without appearing in the operational IRT model per se, e.g., in validity studies, assembling tests, and constructing and modeling tasks. Some of these techniques are described from a GM perspective, as well as how to extend them to more complex assessment situations. Issues are illustrated in the context of language testing.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Competency model development: The backbone of successful stealth assessments;Journal of Computer Assisted Learning;2024-06-11

2. Diagnosing Skills and Misconceptions with Bayesian Networks Applied to Diagnostic Multiple-Choice Tests;Springer Proceedings in Mathematics & Statistics;2024

3. Framework of Assessment Design Based on Evidence-Centered Design for Assessment Analytics;Advances in Analytics for Learning and Teaching;2024

4. The History of Stealth Assessment and a Peek Into Its Future;Games as Stealth Assessments;2023-11-01

5. Examining the factors affecting students' science success with Bayesian networks;International Journal of Assessment Tools in Education;2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3