Prediction of impact behaviour for natural fiber-reinforced composites using the finite element method

Author:

Prasanthi Parvathaneni Phani1,Madhav Vallabhaneni Venkata Venu2,Chaitanya Chadalavada Sri2,Spandana Vallabhaneni Veda3,Saxena Kuldeep K4ORCID,Garg Sahil5ORCID,Zeleke Migbar A67

Affiliation:

1. Department of Mechanical Engineering, Prasad V Potluri Siddhartha Institute of Technology, Vijayawada, India

2. Department of Mechanical Engineering, V R Siddhartha Engineering College, Vijayawada, India

3. Department of Health and Family Welfare, Guntur, India

4. Department of Mechanical Engineering, GLA University, Mathura, India

5. School of Mechanical Engineering, Lovely Professional University, Phagwara, India

6. Department of Mechanical Engineering, Institute of Technology, Hawassa University, Hawassa, Ethiopia

7. Department of Mechanical Engineering, University of Botswana, Gaborone, Botswana

Abstract

In the past ten years, as awareness of biodegradability has increased, so has the utilization of natural fiber-reinforced composites. Along with the material properties, dynamic responsiveness is also necessary for the efficient design of these natural reinforced composites. In the current work, elastic characteristics and interfacial stress are evaluated for natural fiber-reinforced composites utilizing micromechanics and finite element methods. Later, employing explicit dynamic analysis, the natural composite plate was examined under impact loading. The analytical results used to verify the finite element models at each stage show good agreement. To carry out the current study, natural fiber-reinforced composites like hemp, sisal and flax as well as hemp + sisal, sisal + flax and hemp + flax hybrid composites were evaluated for their elastic modulus in longitudinal, transverse, in-plane and out of plane directions as well as their major and minor Poisson’s ratio. By adjusting the impactor’s velocity from 2 m/s to 11 m/s, the deformation, stresses, internal energy and energy summary of the hybrid natural fiber-reinforced composite are calculated from the impact analysis. Based on all the findings, the performance of hemp fiber and hemp fiber-based hybrid composites is better than all other composites taken into consideration for the current work. This research is utilized to build composite materials that function effectively under gradual loading.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3