Moisture Induced Mechanical Characterization of Composite through Numerical Simulation

Author:

Nelson N Rino1

Affiliation:

1. Indian Institute of Information Technoloy

Abstract

<div class="section abstract"><div class="htmlview paragraph">Composite materials find extensive applications in numerous fields, including mechanical components, which are often subjected to varying climatic conditions. Due to the contrasting conditions, there is a difference in the external loadings, leading to the transfer of air, heat, and moisture between the environments. Here, the study is done to model the moisture-based diffusion in order to predict the output beforehand so that necessary precautions can be taken before it fails. The study primarily investigates the heat and moisture-based absorption behavior of composite materials. The Representative Volume Element (RVE) approach is chosen, which enables the simulation of the behavior of the composite at a microscale level, giving insights into the micromechanics and analyzing the material absorption behavior of moisture. The FEA approach for the same is carried out using the COMSOL Multiphysics software. The required RVE of the composite is modeled, and the effect of fiber volume fraction on the hygroscopic swelling, followed by the effect on its properties, is derived. Subsequently, the mechanical characterization of the material is performed. The composite model is run through a moisture-based environmental condition, as in the previous case to evaluate the effects of moisture on the strength of the composite material. The material exposed to the moisture environment showed water uptake. The increase in water uptake causes a decrease in the strength of the material compared to the material with no exposure to moisture. The study focuses on the relationship between the composite’s moisture content and its mechanical characteristics, which can be helpful for the responsible modeling of components in the required environment.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3